1. Ahirwal, M. K., & Londhe, N. (2012). Power spectrum analysis of EEG signals for estimating visual attention. International Journal of Computer Applications, 42(15), 22–25. https://doi.org/10.5120/5773-8039
2. Albaladejo-Garcia, C., Garcia-Aguilar, F., & Moreno, F. J. (2023). The role of inhibitory control in sport performance: Systematic review and meta-analysis in stop-signal paradigm. Neuroscience & Biobehavioral Reviews, 147, 105108.
3. Babiloni, C., Marzano, N., Infarinato, F., Iacoboni, M., Rizza, G., Aschieri, P., Del Percio, C. (2010). “Neural efficiency” of experts’ brain during judgment of actions: A high-resolution EEG study in elite and amateur karate athletes. Behavioural Brain Research, 207(2), 466–475. https://doi.org/10.1016/j.bbr.2009.10.034
4. Badau, D., Baydil, B., & Badau, A. (2018). Differences among three measures of reaction time based on hand laterality in individual sports. Sports, 6(2), 45. https://doi.org/10.3390/sports6020045
5. Bhattacharya, P., Chatterjee, S., & Mondal, S. (2022). Effect of karate on neurocognitive physiology: A focused review. Neurology India, 70(1), 11–18.
7. Calle-Jaramillo, G. A., Gonzalez-Palacio, E. V., Jaramillo, A. R., & Antonio, J. (2024). Differences between expert and novice players in execution time and decision-making in technical-tactical actions in football (passing and driving) performed under laboratory conditions. Retos, 52(2041), 402–409.
8. Can, S., Kilit, B., Arslan, E., & Suveren, S. (2014). The comparison of reaction time of male tennis players, table tennis players and the ones who don’t exercise at all in 10 to 12 age groups. Beden Eğitimi ve Spor Bilimleri Dergisi, 8(2), 195–201.
9. Cheng, M. Y., Yu, C. L., An, X., Wang, L., Tsai, C. L., Qi, F., & Wang, K. P. (2024). Evaluating EEG neurofeedback in sport psychology: A systematic review of RCT studies for insights into mechanisms and performance improvement. Frontiers in Psychology, 15, 1331997.
10. Christie, A. W., & Patel, N. (2024). Ab. No. 84 Athlete Mindful Skills Associated With Reaction Time Among Recreational Football Players: An Analytical Study. Journal of Society of Indian Physiotherapists, 8(1), 65.
11. Del Percio, C., Babiloni, C., Marzano, N., Iacoboni, M., Infarinato, F., Vecchio, F., ... & Eusebi, F. (2009). “Neural efficiency” of athletes’ brain for upright standing: A high-resolution EEG study. Brain Research Bulletin, 79(3–4), 193–200.
12. Del Percio, C., Rossini, P. M., Marzano, N., Iacoboni, M., Infarinato, F., Aschieri, P., ... & Eusebi, F. (2008). Is there a “neural efficiency” in athletes? A high-resolution EEG study. NeuroImage, 42(4), 1544–1553.
13. Demos, J. N. (2005). Getting started with neurofeedback. W. W. Norton & Company.
14. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168.
15. Duru, A. D., & Assem, M. (2018). Investigating neural efficiency of elite karate athletes during a mental arithmetic task using EEG. Cognitive Neurodynamics, 12, 95–102. https://doi.org/10.1007/s11571-017-9459-8
16. Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115(1), 131–139.
17. Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Frontiers in Human Neuroscience, 11, 51. https://doi.org/10.3389/fnhum.2017.00051
18. Fang, Q. (2022). Impact of sport training on adaptations in neural.
19. Heilmann, F. (2022). Self-report versus neuropsychological tests for examining executive functions in youth soccer athletes—A cross-sectional study. Behavioral Sciences, 12(9), 346. https://doi.org/10.3390/bs12090346
20. Huang, H., Li, R., & Zhang, J. (2023). A review of visual sustained attention: Neural mechanisms and computational models. PeerJ, 11, e15351. https://doi.org/10.7717/peerj.15351
21. Jain, A., Bansal, R., Kumar, A., & Singh, K. D. (2015). A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first-year students. International Journal of Applied and Basic Medical Research, 5(2), 124–127. https://doi.org/10.4103/2229-516X.157168
22. Karimoi, R. Y., & Karimoi, A. Y. (2014). The effects of beta-I and fractal dimension neurofeedback on reaction time. International Journal of Intelligent Systems and Applications, 6(11), 42–48.
23. Köster, M., & Gruber, T. (2022). Rhythms of human attention and memory: An embedded process perspective. Frontiers in Human Neuroscience, 16, 905837.
24. Leark, R. A., Greenberg, L. M., Kindschi, C. L., Dupuy, T. R., & Hughes, S. J. (2007). Test of Variables of Attention Continuous Performance Test. The TOVA Company.
25. Lempke, L. B., Howell, D. R., Eckner, J. T., & Lynall, R. C. (2020). Examination of reaction time deficits following concussion: A systematic review and meta-analysis. Sports Medicine, 50, 1341–1359.
26. Mamaghani, J., & Javanmar, G. H. (2008). Standardization of a Brief Symptom Inventory (BSI) for diagnostic aims in consultant and therapeutic situations.
27. Mirifar, A., Beckmann, J., & Ehrlenspiel, F. (2017). Neurofeedback as supplementary training for optimizing athletes’ performance: A systematic review with implications for future research. Neuroscience & Biobehavioral Reviews, 75, 419–432.
28. Nuri, L., Shadmehr, A., Ghotbi, N., & Attarbashi Moghadam, B. (2013). Reaction time and anticipatory skill of athletes in open and closed skill-dominated sport. European Journal of Sport Science, 13(5), 431–436.
29. Pal, S., Yadav, J., Kalra, S., & Sindhu, B. (2020). Different training approaches in karate—A review. London Journal of Research in Humanities and Social Sciences, 20, 33–44.
30. Park, J. L., Fairweather, M. M., & Donaldson, D. I. (2015). Making the case for mobile cognition: EEG and sports performance. Neuroscience & Biobehavioral Reviews, 52, 117–130.
31. Pineda-Hernández, S. (2022). Playing under pressure: EEG monitoring of activation in professional tennis players. Physiology & Behavior, 247, 113723.
32. Quartiroli, A., Wagstaff, C. R., Martin, D. R., & Tod, D. (2024). A systematic review of professional identity in sport psychology. International Review of Sport and Exercise Psychology, 17(1), 264–290.
33. Rashid, M. M., & Ahmad, M. (2017, February). Epileptic seizure classification using statistical features of EEG signal. In 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 308–312). IEEE.
34. Reigal, R. E., Barrero, S., Martín, I., Morales-Sánchez, V., Juárez-Ruiz de Mier, R., & Hernández-Mendo, A. (2019). Relationships between reaction time, selective attention, physical activity, and physical fitness in children. Frontiers in Psychology, 10, 2278. https://doi.org/10.3389/fpsyg.2019.02278
35. Schiff, S. J., Aldroubi, A., Unser, M., & Sato, S. (1994). Fast wavelet transformation of EEG. Electroencephalography and Clinical Neurophysiology, 91(6), 442–455.
36. Sun, Q. (2024). EEG-powered cerebral transformer for athletic performance. Frontiers in Neurorobotics, 18, 1499734.
37. Thompson, T., Steffert, T., Ros, T., Leach, J., & Gruzelier, J. (2008). EEG applications for sport and performance. Methods, 45(4), 279–288. https://doi.org/10.1016/j.ymeth.2008.07.006
38. Toy, S., Ozsoy, S., Shafiei, S., Antonenko, P., & Schwengel, D. (2023). Using electroencephalography to explore neurocognitive correlates of procedural proficiency: A pilot study to compare experts and novices during simulated endotracheal intubation. Brain and Cognition, 165, 105938.
39. Trajkovic, J. (2023). Oscillatory mechanisms of conscious perception and attention.
40. Tsai, Y. H., Wu, S. K., Yu, S. S., & Tsai, M. H. (2022). Analyzing brain waves of table tennis players with machine learning for stress classification. Applied Sciences, 12(16), 8052. https://doi.org/10.3390/app12168052
41. Übeyli, E. D. (2009). Statistics over features: EEG signals analysis. Computers in Biology and Medicine, 39(8), 733–741.
42. Visser, A., Büchel, D., Lehmann, T., & Baumeister, J. (2022). Continuous table tennis is associated with processing in frontal brain areas: An EEG approach. Experimental Brain Research, 240(6), 1899–1909.
43. Wang, C., Verma, A. K., Guragain, B., Xiong, X., & Liu, C. (2024). Classification of bruxism based on time-frequency and nonlinear features of single channel EEG. BMC Oral Health, 24(1), 81. https://doi.org/10.1186/s12903-024-03958-8
44. Wang, X., Liu, Z., Zhang, H., & Ji, C. (2023). Transfer effect of cognitive advantages in visual working memory capacity: Evidence from elite football players. Behavioral Sciences, 13(6), 464. https://doi.org/10.3390/bs13060464
45. Wolf, S., Brölz, E., Keune, P. M., Wesa, B., Hautzinger, M., Birbaumer, N., & Strehl, U. (2015). Motor skill failure or flow-experience? Functional brain asymmetry and brain connectivity in elite and amateur table tennis players. Biological Psychology, 105, 95–105.
46. Wolf, S., Brölz, E., Scholz, D., Ramos-Murguialday, A., Keune, P. M., Hautzinger, M., ... & Strehl, U. (2014). Winning the game: Brain processes in expert, young elite and amateur table tennis players. Frontiers in Behavioral Neuroscience, 8, 370. https://doi.org/10.3389/fnbeh.2014.00370
47. Yao, Z. F., Sligte, I. G., & Ridderinkhof, R. (2024). Olympic team rowers and team swimmers show altered functional brain activation during working memory and action inhibition. Neuropsychologia, 203, 108974.
48. Zhu, Y., Wu, D., Sun, K., Chen, X., Wang, Y., He, Y., & Xiao, W. (2023). Alpha and theta oscillations are causally linked to interference inhibition: Evidence from high-definition transcranial alternating current stimulation. Brain Sciences, 13(7), 1026. https://doi.org/10.3390/brainsci13071026