تأثیر تحریک الکتریکی جریان مستقیم فراجمجمه‌ای بر تصمیم‌گیری ریسک‌پذیر: تفاوت های جنسیتی در شطرنج

نوع مقاله : مطالعه پژوهشی اصیل

نویسندگان

1 پژوهشگر پسادکتری مدیریت ورزشی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه مدیریت ورزشی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

هدف: با توجه به عدم قطعیتِ وجود تفاوت­های جنسیتی در حوزۀ تصمیم­گیری، این مسأله به ذهن می­آید که آیا زنان و مردان در پاسخ به تحریک الکتریکی و تأثیر آن بر رفتارهای ریسک­پذیر به صورت متفاوت عمل می­کنند یا خیر؟ هدف پژوهش حاضر، تعیین تأثیر تحریک الکتریکی جریان مستقیم فراجمجمه­ای بر تصمیم­گیری ریسک پذیر دانش­آموزان رشتۀ ورزشی شطرنج براساس جنسیت بود.
مواد و روش ها: از این رو، تعداد 28 دانش­آموز متوسطۀ دوم؛14 دانش آموز دختر (87/0±16) و 14 دانش آموز پسر (22/1±5/16) که در مسابقات لیگ استانی و کشوری شطرنج حضور داشتند، شرکت نمودند. هر آزمودنی در سه جلسۀ مجزا در آزمایشگاه با فاصلۀ حداقل 72 ساعت استراحت بین جلسات حضور یافت. آزمودنی­ها در هر جلسه، قبل و بعد از هر نوع تحریک (تحت یکی از 3 نوع تحریک الکتریکی؛ شامل آنودال راست/کاتودال چپ، کاتودال راست/آنودال چپ و شَم به مدت 20 دقیقه با شدت 2 میلی آمپر بر روی قشر خلفی­جانبی پیش پیشانی)، تکلیف شرط بندی آیوا و بازی رایانه­ای لیچز را انجام دادند.
یافته ها:  تحلیل داده ها با استفاده از تحلیل واریانس مرکب نشان داد بین تحریک الکتریکی آنودال راست/کاتودال چپ و کاتودال راست/آنودال چپ تفاوت معناداری وجود داشت (001/0P=) در حالی­که؛ بین جنسیت و انواع مختلف تحریک الکتریکی تفاوت معناداری وجود نداشت.
نتیجه گیری:  به عنوان یک یافتۀ جدید، این نتایج مؤید امکان استفاده از تحریک الکتریکی جریان مستقیم فراجمجمه­ای؛ به عنوان ابزاری برای بهبود تصمیم­گیری ریسک­پذیر در ورزش است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Transcranial Direct Current Stimulation on Risky Decision-Making: Gender Differences in Chess

نویسندگان [English]

  • Shahrouz Ghayebzadeh 1
  • Mehrdad Moharramzadeh 2
1 Post-doctoral Researcher of Sport Management, University of Mohaghegh Ardabili, Ardabil, Iran
2 Sport Management Department, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

Background and Purpose
Decision-making is a critical aspect of cognitive control that involves evaluating desires and modulating behavioral responses (Coutlee & Huettel, 2012). Neuroscientific research has identified two main types of decision-making: risky decision-making, linked to the dorsolateral prefrontal cortex, and decision-making under ambiguity, linked to the orbitofrontal cortex (Bechara et al., 1996). In sports, the decision-making process is influenced by environmental, temporal, and regulatory conditions that athletes face (Ghayebzadeh et al., 2021). Chess, as a cognitive sport, enhances skills such as decision-making, problem-solving, and judgment.
Gender differences are one factor that can impact decision-making; men tend to take more risks than women, and younger, less experienced individuals are more prone to risk-taking. Recent studies have suggested that transcranial direct current stimulation (tDCS) can enhance cognitive functions in sports (Ghayebzadeh et al., 2023). This study aims to explore how tDCS affects risk-taking decisions in chess players, taking into account gender differences. The ultimate objective is to improve cognitive and strategic performance in chess through non-invasive brain stimulation techniques.
 
Materials and Methods
In a counterbalanced, double-blind, and sham-controlled study design, 28 high school students, 14 females (16±0.87) and 14 males (16.5±1.22), who actively participated in regional and national chess competitions, volunteered for this study. Inclusion criteria required participants to be right-handed, have no history of clinical impairments or neurological disorders, not use any external or internal electrical stimulators, and have at least 1 year of experience in sports competitions at various levels. All participants were briefed on the study protocol, and written informed consent was obtained from each individual. The experimental procedure was approved by the Ethics Committee on Biomedical Research at the University of Mohaghegh Ardabili, Ardabil, Iran (IR. UMA.REC.1402.103), and conducted following the declaration of Helsinki guidelines. Prior to the experimental sessions, participants underwent a familiarization session to understand the entire experimental process and the tDCS intervention. Subsequently, each participant visited the laboratory on three different occasions with 72-hour intervals between sessions. During each session, before and after each type of stimulation (right anodal/left cathodal, right cathodal/left anodal, and sham, each applied for 20 minutes at 2 mA intensity on the dorsolateral prefrontal cortex), participants completed the Iowa Gambling Task and the Lichess computer game.
Results
The overall results of the Iowa Gambling Task (IGT) based on gender before and after tDCS intervention under three different stimulation types are presented in Table 1.
Given the non-significant interaction effect, the main effect of the between-group factor was analyzed. The results showed no significant difference between the two groups (boys and girls) in terms of gender across any of the stimulation types (F(1, 26) = 0.674, P= 0.419). However, the main effect of the within-group factor revealed a significant difference among the three stimulation models (F(2, 25) = 11.06, P=0.001), with an eta coefficient of 0.470, indicating a very large effect size. Pairwise comparisons of the three stimulation models using Bonferroni correction indicated that the risk-taking decision score in the right anodal/left cathodal stimulation condition was significantly higher than in the right cathodal/left anodal stimulation condition (P=0.001).
Conclusion
Neuroimaging studies have demonstrated a significant correlation between the DLPFC and risky decision-making in chess players following right anodal/left cathodal stimulation. Chess, being a strategic and mental game, involves risk-taking decisions, such as sacrificing a piece or initiating an attack. Right anodal/left cathodal stimulation on the DLPFC alters the reward/punishment balance, leading to an increase in risk-taking decisions. Conversely, right cathodal/left anodal stimulation reduces risk-taking decisions. This study suggests that these differences are influenced by personality traits, with extroverted individuals tending to take more risks, while introverted individuals act more cautiously. Other factors like stress, emotions, and impulsivity can also play a role. Furthermore, the findings indicated no significant difference between different tDCS conditions and gender. The relationship between gender and risk-taking is complex and may be influenced by cultural norms, individual differences, and social upbringing. From a practical perspective, these results suggest that brain modulation or "neurodoping" could be a potential strategy to enhance athletes' performance.
 Ethical Considerations
All procedures were approved by the Ethics Committee on Biomedical Research at the University of Mohaghegh Ardabili, Ardabil, Iran (Code: IR.UMA.REC.1402.103), and conducted following the declaration of Helsinki guidelines.
Funding
This project has been supported by the “University of Mohaghegh Ardabili, Ardabil, Iran”
Authors' contributions
All authors contributed equally to the data collection, conceptualization, data analysis; presentation of the idea, authorship of the introduction, discussion and methodology, writing and revision of the article.
Conflicts of Interest
The authors declared no conflict of interest.
Acknowledgments
We sincerely thank and appreciate all the people who participated in this research.
 
 

کلیدواژه‌ها [English]

  • Students
  • Cognitive function
  • Neural management
  • Cognitive neuroscience
  • Dorsolateral prefrontal cortex
  1. Aloka, P. J., & Bojuwoye, O. (2013). Gender, age and teaching experiences differences in decision-making behaviours of members of selected Kenyan secondary school disciplinary panels. https://doi.org/10.5539/ass.v9n10p43
  2. Barrett, D. C., & Fish, W. W. (2011). Our Move: Using Chess to Improve Math Achievement for Students Who Receive Special Education Services. International Journal of Special Education, 26(3), 181-193.
  3. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50(1-3), 7-15. https://doi.org/10.1016/0010-0277(94)90018-3
  4. Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb Cortex, 6(2), 215-225. https://doi.org/10.1093/cercor/6.2.215
  5. Bechara, A., & Van Der Linden, M. (2005). Decision-making and impulse control after frontal lobe injuries. Current Opinion in Neurology, 18(6), 734-739. https://doi.org/10.1097/01.wco.0000194141.56429.3c
  6. Bell, S. B., & DeWall, N. (2018). Does transcranial direct current stimulation to the prefrontal cortex affect social behavior? A meta-analysis. Social cognitive and affective neuroscience, 13(9), 899-906. https://doi.org/10.1093/scan/nsy069
  7. Borghans, L., Heckman, J. J., Golsteyn, B. H., & Meijers, H. (2009). Gender differences in risk aversion and ambiguity aversion. Journal of the European Economic Association, 7(2-3), 649-658. https://doi.org/10.1162/jeea.2009.7.2-3.649
  8. Byrnes, J. P., Miller, D. C., & Schafer, W. D. (1999). Gender differences in risk taking: A meta-analysis. Psychological Bulletin, 125(3), 367–383. https://doi.org/10.1037/0033-2909.125.3.367.
  9. Cheng, G. L., & Lee, T. M. (2016). Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex. Social Neuroscience, 11(4), 353-364. https://doi.org/10.1080/17470919.2015.1085895
  10. Coutlee, C. G., & Huettel, S. A. (2012). The functional neuroanatomy of decision making: prefrontal control of thought and action. Brain Research, 1428, 3-12. https://doi.org/10.1016/j.brainres.2011.05.053
  11. Dreyer, A. J., Stephen, D., Human, R., Swanepoel, T. L., Adams, L., O'Neill, A., . . . Thomas, K. G. (2022). Risky decision making under stressful conditions: men and women with smaller cortisol elevations make riskier social and economic decisions. Frontiers in psychology, 13, 810031. https://doi.org/10.3389/fpsyg.2022.810031
  12. Edgcumbe, D. R., Thoma, V., Rivolta, D., Nitsche, M. A., & Fu, C. H. (2019). Anodal transcranial direct current stimulation over the right dorsolateral prefrontal cortex enhances reflective judgment and decision-making. Brain stimulation, 12(3), 652-658. https://doi.org/10.1016/j.brs.2018.12.003
  13. Ekhtiari, H., Behzadi, A., Jannati, A., & Mokri, A. (2005). Frequency of Losing or The Sum Lost: Which One Makes Us More Negative? icss, 6(3), 17-27. In Persian
  14. Fecteau, S., Pascual-Leone, A., Zald, D. H., Liguori, P., Théoret, H., Boggio, P. S., & Fregni, F. (2007). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. The Journal of neuroscience : the official journal of the Society for Neuroscience27(23), 6212–6218. https://doi.org/10.1523/JNEUROSCI.0314-07.2007
  15. Friehs, M. A., Güldenpenning, I., Frings, C., & Weigelt, M. (2020). Electrify your Game! Anodal tDCS Increases the Resistance to Head Fakes in Basketball. Journal of Cognitive Enhancement4(1), 62–70. https://doi.org/10.1007/s41465-019-00133-8.
  16. Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical neurophysiology, 117(4), 845-850. https://doi.org/10.1016/j.clinph.2005.12.003
  17. Ghayebzadeh, S., Zardoshtian, S., Amiri, E., Giboin, L.-S., & Machado, D. G. d. S. (2023). Anodal Transcranial Direct Current Stimulation over the Right Dorsolateral Prefrontal Cortex Boosts Decision Making and Functional Impulsivity in Female Sports Referees. Life, 13(5), 1131. https://doi.org/10.3390/life13051131
  18. Ghayebzadeh, S., Zardoshtian, S., sabourimoghaddam, H., Amiri, E., & Giboin, LS. (2021). The effect of Different Models of Transcranial Direct Current Stimulation on Risky Decision-Making in Sports Referees. Sport Physiology, 13(51), 117-138. In Persian https://doi.org/10.22089/spj.2021.10363.2126
  19. Ghayebzadeh, S., Zardoshtian, S., sabourimoghaddam, h., Amiri, E., & Giboin, LS.. (2022). The Effect of Different Models of Transcranial Direct Current Stimulation on Impulsivity in Sports Referees: The Role of Leadership Styles. Sport Psychology Studies, 10(38), 1-22. In Persian https://doi.org/10.22089/spsyj.2021.10300.2137
  20. Ghayebzadeh, S., Zardoshtian, S., sabourimoghaddam, H., Amiri, E., Giboin, L. (2021). The Interventional Effect of transcranial direct current stimulation (tDCS) on the factors influencing in risky decision-making of sport referees based on leadership styles. (Ph.D. thesis), Razi university, Kermanshah, Iran.,
  21. Giboin, L. S., & Gruber, M. (2018). Anodal and cathodal transcranial direct current stimulation can decrease force output of knee extensors during an intermittent MVC fatiguing task in young healthy male participants. J Neurosci Res, 96(9), 1600-1609. https://doi.org/10.1002/jnr.24254
  22. Gilmore, C. S., Dickmann, P. J., Nelson, B. G., Lamberty, G. J., & Lim, K. O. (2018). Transcranial Direct Current Stimulation (tDCS) paired with a decision-making task reduces risk-taking in a clinically impulsive sample. Brain stimulation, 11(2), 302-309. https://doi.org/10.1016/j.brs.2017.11.011
  23. Jianakoplos, N. A., & Bernasek, A. (1998). Are women more risk averse? Economic inquiry, 36(4), 620-630. https://doi.org/10.1111/j.1465-7295.1998.tb01740.x
  24. León, J., Sánchez-Kuhn, A., Fernández-Martín, P., Páez-Pérez, M., Thomas, C., Datta, A., Flores, P. (2020). Transcranial direct current stimulation improves risky decision making in women but not in men: a sham-controlled study. Behavioural Brain Research, 382, 112485. https://doi.org/10.1016/j.bbr.2020.112485
  25. Lobão, J. (2022). Gender differences in risk tolerance: New evidence from a survey of postgraduate students. In Handbook of Research on New Challenges and Global Outlooks in Financial Risk Management (pp. 64-82): IGI Global. https://doi.org/10.4018/978-1-7998-8609-9.ch004
  26. Nitsche, M. A., Seeber, A., Frommann, K., Klein, C. C., Rochford, C., Nitsche, M. S., . . . Antal, A. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. The Journal of physiology, 568(1), 291-303. https://doi.org/10.1113/jphysiol.2005.092429
  27. Noakes, T. D. (2011). Time to move beyond a brainless exercise physiology: the evidence for complex regulation of human exercise performance. Applied physiology, Nutrition, and Metabolism, 36(1), 23-35. https://doi.org/10.1139/h10-082
  28. Noakes, T. D. (2012). Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Frontiers in Physiology, 3, 82. https://doi.org/10.3389/fphys.2012.00082
  29. Ohn, S. H., Park, C.-I., Yoo, W.-K., Ko, M.-H., Choi, K. P., Kim, G.-M., Kim, Y.-H. (2008). Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport, 19(1), 43-47. https://doi.org/10.1097/wnr.0b013e3282f2adfd
  30. Ota, K., Shinya, M., & Kudo, K. (2019). Transcranial Direct Current Stimulation Over Dorsolateral Prefrontal Cortex Modulates Risk-Attitude in Motor Decision-Making. Front Hum Neurosci, 13, 297. https://doi.org/10.3389/fnhum.2019.00297
  31. Pacheco, L., Lobão, J., & Coelho, S. (2023). Gender and risk aversion: Evidence from a natural experiment. Games, 14(3), 49. https://doi.org/10.3390/g14030049
  32. Rasekh, S., Khoshbakht, F., & Alborzi, M. (2020). The Effect of Chess Game on Decision Making Process and Academic Achievement in Mathematics: The Moderating Role of Gender. Studies in Learning & Instruction, 12(1), 296-312. In Persian
  33. Sanjaya, R., Wang, J., & Yang, Y. (2022). Measuring the non-transitivity in chess. Algorithms15(5), 152. https://doi.org/10.3390/a15050152
  34. Singh, V., Schiebener, J., Müller, S. M., Liebherr, M., Brand, M., & Buelow, M. T. (2020). Country and sex differences in decision making under uncertainty and risk. Frontiers in Psychology, 11, 486. https://doi.org/10.3389/fpsyg.2020.00486
  35. Tominc, P., & Rebernik, M. (2007). Gender differences in early-stage entrepreneurship in three European post-socialist countries. Društvena istraživanja: časopis za opća društvena pitanja, 16(3 (89)), 589-611.
  36. Velea, T. (2022). The Influence of Playing Chess on Football Performance in Children Aged 10-12. Revista Românească pentru Educaţie Multidimensională, 14(4 Sup. 1), 421-437. https://doi.org/10.18662/rrem/14.4sup1/680
  37. Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., Kappenman, E. S. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical neurophysiology, 127(2), 1031-1048. https://doi.org/10.1016/j.clinph.2015.11.012
  38. Yang, X., Lin, Y., Gao, M., & Jin, X. (2018). Effect of modulating activity of DLPFC and gender on search behavior: a tDCS experiment. Frontiers in human neuroscience, 12, 325. https://doi.org/10.3389/fnhum.2018.00325
  39. Ye, H., Chen, S., Huang, D., Wang, S., & Luo, J. (2015). Modulating activity in the prefrontal cortex changes decision-making for risky gains and losses: A transcranial direct current stimulation study. Behavioural Brain Research, 286, 17-21. doi:https://doi.org/10.1016/j.bbr.2015.02.037